Exploring Biofilm-Related Traits and Bile Salt Efficacy as Anti-Biofilm Agents in MDR Acinetobacter baumannii

Author:

Aleksic Sabo Verica1ORCID,Škorić Dušan2ORCID,Jovanović-Šanta Suzana2ORCID,Knezevic Petar1ORCID

Affiliation:

1. Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia

2. Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia

Abstract

Acinetobacter baumannii has been designated as a critical priority pathogen by the World Health Organization for the development of novel antimicrobial agents. This study aimed to investigate both the phenotypic and genotypic traits of multidrug-resistant (MDR) A. baumannii strains, along with the effects of natural bile salts on biofilm formation. The research analyzed phenotypic traits, including autoaggregation, hydrophobicity, twitching motility, lectin production, and biofilm formation, as well as genotypic traits such as the presence of bap and blaPER-1 genes in twenty wound and eight environmental MDR A. baumannii isolates. While all strains were identified as good biofilm producers, no statistically significant correlation was detected between the examined traits and biofilm formation. However, differences in biofilm production were observed between environmental and wound isolates. The natural bile salts Na-cholate, Na-deoxycholate, and Na-chenodeoxycholate demonstrated effective anti-A. baumannii activity (MIC = 0.25–10 mg mL−1), with significant anti-biofilm effects. Na-deoxycholate and Na-chenodeoxycholate inhibited 94–100% of biofilm formation at super-MIC concentrations (8–32 mg mL−1). This study underscores the urgent need for innovative strategies to combat antibiotic resistance and biofilm formation in A. baumannii, highlighting the potential of natural bile salts as promising biofilm inhibitors and encouraging further research into their modification and combination with other antimicrobials.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3