Persistence and Culturability of Escherichia coli under Induced Toxin Expression

Author:

Dhaouadi Yousr12ORCID,Hashemi Mohamad Javad12,Ren Dacheng1234

Affiliation:

1. Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA

2. BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA

3. Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA

4. Department of Biology, Syracuse University, Syracuse, NY 13244, USA

Abstract

Background/Objectives: Bacteria are well known to enter dormancy under stress conditions. However, the mechanisms of different dormancy-related phenotypes are still under debate and many questions remain unanswered. This study aims to better understand the effects of toxin gene expression on the dormancy of Escherichia coli. Methods: The effects of toxin gene expression on growth, persistence, and culturability were characterized. Specifically, we detailed dose- and time-dependent dormancy of E. coli and its susceptibility to ofloxacin via arabinose-induced hipA toxin gene expression under the PBAD promoter. A new plot was developed to better describe the dynamic changes in culturability and persistence. The expression level of hipA was determined using qPCR and cellular activities were monitored using fluorescence imaging and flow cytometry. Results: High-level persister formation and strong tolerance to ofloxacin were observed after high-level hipA induction. The new plot reveals more information than the changes in persistence alone, e.g., reduced culturability of E. coli and thus deeper dormancy under high-level hipA induction. Consistently, controlled hipA induction led to decreased cellular activities at promoter PrrnBP1 and an increase in the non-culturable subpopulation. Conclusions: Overall, this study provides new insights into dormancy induced by toxin gene expression and a more comprehensive view of persistence and culturability. The findings may help develop better control agents against dormant bacterial cells.

Funder

U.S. National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3