Synthesis of Ribose-Coated Copper-Based Metal–Organic Framework for Enhanced Antibacterial Potential of Chloramphenicol against Multi-Drug Resistant Bacteria

Author:

Haseena ORCID,Khan Adnan,Ghaffar Iqra,Baty Roua S.ORCID,Abdel-Daim Mohamed M.ORCID,Habib Shahida M.,Kanwal Tasmina,Shah Muhammad Raza

Abstract

The rise in bacterial resistance to currently used antibiotics is the main focus of medical researchers. Bacterial multidrug resistance (MDR) is a major threat to humans, as it is linked to greater rates of chronic disease and mortality. Hence, there is an urgent need for developing effective strategies to overcome the bacterial MDR. Metal–organic frameworks (MOFs) are a new class of porous crystalline materials made up of metal ions and organic ligands that can vary their pore size and structure to better encapsulate drug candidates. This study reports the synthesis of ribose-coated Cu-MOFs for enhanced bactericidal activity of chloramphenicol (CHL) against Escherichia coli (resistant and sensitive) and MDR Pseudomonas aeruginosa. The synthesized Cu-MOFs were characterized with DLS, FT-IR, powder X-ray diffraction, scanning electron microscope, and atomic force microscope. They were further investigated for their efficacy against selected bacterial strains. The synthesized ribose-coated Cu-MOFs were observed as spherical shape structure with the particle size of 562.84 ± 13.42 nm. CHL caused the increased inhibition of E. coli and MDR P. aeruginosa with significantly reduced MIC and MBIC values after being encapsulated in ribose-coated Cu-MOFs. The morphological analysis of the bacterial strains treated with ribose-coated CHL-Cu-MOFs showed the complete morphological distortion of both E. coli and MDR P. aeruginosa. Based on the results of the study, it can be suggested that ribose-coated Cu-MOFs may be an effective alternate candidate to overcome the MDR and provide new perspective for the treatment of MDR bacterial infections.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference54 articles.

1. LC Determination of Chloramphenicol in Honey Using Dispersive Liquid–Liquid Microextraction

2. Chloramphenicol – A Potent Armament Against Multi-Drug Resistant (MDR) Gram Negative Bacilli?

3. Basic and Clinical Pharmacology;Katzung,2012

4. Chloramphenicol encapsulated in poly-ε-caprolactone–pluronic composite: Nanoparticles for treatment of MRSA-infected burn wounds;Kalita;Int. J. Nanomed.,2015

5. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3