Inhibition of Quorum Sensing and Virulence Factors of Pseudomonas aeruginosa by Biologically Synthesized Gold and Selenium Nanoparticles

Author:

Elshaer Soha Lotfy,Shaaban Mona I.ORCID

Abstract

The development of microbial resistance requires a novel approach to control microbial infection. This study implies the microbial synthesis of nanometals and assessment of their antivirulent activity against Pseudomonas aeruginosa. Streptomyces isolate S91 was isolated from soil with substantial ability for growth at high salts concentrations. The cell-free supernatant of S91was utilized for the synthesis of Au-NPs and Se-NPs. The 16S rRNA sequence analysis of Streptomyces S91 revealed that S91 had a high similarity (98.82%) to Streptomyces olivaceous. The biosynthesized Au-NPs and Se-NPs were characterized using a UV-Vis spectrophotometer, dynamic light scattering, transmission electron microscopy, energy dispersive X-ray diffraction and Fourier-transform infrared spectroscopy. The quorum sensing inhibitory (QSI) potential of Au-NPs and Se-NPs and the antivirulence activity was examined against P. aeruginosa. The QSI potential was confirmed using RT-PCR. The synthesized Au-NPs and Se-NPs were monodispersed spherical shapes with particle size of 12.2 and 67.98 nm, respectively. Au-NPs and Se-NPs eliminated QS in P. aeruginosa at a concentration range of 2.3–18.5 µg/mL for Au-NPs and 2.3–592 µg/mL for Se-NPs. In addition, Au-NPs and Se-NPs significantly inhibited QS-related virulence factors, such as pyocyanin, protease and, elastase in P. aeruginosa. At the molecular level, Au-NPs and Se-NPs significantly suppressed the relative expression of QS genes and toxins. Hence, the biosynthesized Au-NPS and Se-NPS could be substantial inhibitors of QS and virulence traits of P. aeruginosa.

Funder

This study was supported by Post graduate Research and Cultural Affairs Sector, Mansoura Uni-versity.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3