Abstract
Enzymes MurA and MurF, involved in bacterial cell wall synthesis, have been validated as targets for the discovery of novel antibiotics. A panel of plant-origin antibacterial diterpenes and synthetic analogs derived therefrom were investigated for their inhibitory properties on these enzymes from Escherichia coli and Staphylococcus aureus. Six compounds were proven to be effective for inhibiting MurA from both bacteria, with IC50 values ranging from 1.1 to 25.1 µM. To further mechanistically investigate the nature of binding and to explain the activity, these compounds were docked into the active site of MurA from E. coli. The aromatic ring of the active compounds showed a T-shaped π–π interaction with the phenyl ring of Phe328, and at least one hydrogen bond was formed between the hydroxy groups and Arg120 and/or Arg91. The results disclosed here establish new chemical scaffolds for the development of novel entities targeting MurA as potential antibiotics to combat the threat of pathogenic bacteria, particularly resistant strains.
Funder
Catholic University of Córdoba
Fondo Nacional de Ciencia Tecnología e Innovación
National Scientific and Technical Research Council
Slovenian Research Agency
University of Patras
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献