Plasticity of Coagulase-Negative Staphylococcal Membrane Fatty Acid Composition and Implications for Responses to Antimicrobial Agents

Author:

Tiwari Kiran B.,Gatto CraigORCID,Wilkinson Brian J.

Abstract

Staphylococcus aureus demonstrates considerable membrane lipid plasticity in response to different growth environments, which is of potential relevance to response and resistance to various antimicrobial agents. This information is not available for various species of coagulase-negative staphylococci, which are common skin inhabitants, can be significant human pathogens, and are resistant to multiple antibiotics. We determined the total fatty acid compositions of Staphylococcus auricularis, Staphylococcus capitis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, and Staphylococcus aureus for comparison purposes. Different proportions of branched-chain and straight-chain fatty acids were observed amongst the different species. However, growth in cation-supplemented Mueller–Hinton broth significantly increased the proportion of branched-chain fatty acids, and membrane fluidities as measured by fluorescence anisotropy. Cation-supplemented Mueller–Hinton broth is used for routine determination of antimicrobial susceptibilities. Growth in serum led to significant increases in straight-chain unsaturated fatty acids in the total fatty acid profiles, and decreases in branched-chain fatty acids. This indicates preformed fatty acids can replace biosynthesized fatty acids in the glycerolipids of coagulase-negative staphylococci, and indicates that bacterial fatty acid biosynthesis system II may not be a good target for antimicrobial agents in these organisms. Even though the different species are expected to be exposed to skin antimicrobial fatty acids, they were susceptible to the major skin antimicrobial fatty acid sapienic acid (C16:1Δ6). Certain species were not susceptible to linoleic acid (C18:2Δ9,12), but no obvious relationship to fatty acid composition could be discerned.

Funder

National Institute of Allergy and Infectious Diseases

National Institutes of Health

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3