Crosstalks between NOD1 and Histone H2A Contribute to Host Defense against Streptococcus agalactiae Infection in Zebrafish

Author:

Wu Xiaoman,Xiong Fan,Fang Hong,Zhang Jie,Chang Mingxian

Abstract

Correlation studies about NOD1 and histones have not been reported. In the present study, we report the functional correlation between NOD1 and the histone H2A variant in response to Streptococcus agalactiae infection. In zebrafish, NOD1 deficiency significantly promoted S. agalactiae proliferation and decreased larval survival. Transcriptome analysis revealed that the significantly enriched pathways in NOD1−/− adult zebrafish were mainly involved in immune and metabolism. Among 719 immunity-associated DEGs at 48 hpi, 74 DEGs regulated by NOD1 deficiency were histone variants. Weighted gene co-expression network analysis identified that H2A, H2B, and H3 had significant associations with NOD1 deficiency. Above all, S. agalactiae infection could induce the expression of intracellular histone H2A, as well as NOD1 colocalized with histone H2A, both in the cytoplasm and cell nucleus in the case of S. agalactiae infection. The overexpression of H2A variants such as zfH2A-6 protected against S. agalactiae infection and could improve cell survival in NOD1-deficient cells. Furthermore, NOD1 could interact with zfH2A-6 and cooperate with zfH2A-6 to inhibit the proliferation of S. agalactiae. NOD1 also showed a synergetic effect in inducing the expression of many antibacterial genes, especially antibacterial pattern recognition receptors PGRP2, PGRP5, and PGRP6. Collectively, these results firstly highlight the roles of NOD1 deficiency in the regulation of immune-related and metabolic pathways, and the correlation between zebrafish NOD1 and histone H2A variant in the defense against S. agalactiae infection.

Funder

Wuhan Application Foundation Frontier Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3