Involvement of a Multidrug Efflux Pump and Alterations in Cell Surface Structure in the Synergistic Antifungal Activity of Nagilactone E and Anethole against Budding Yeast Saccharomyces cerevisiae

Author:

Ueda Yuki,Tahara Yuhei O.,Miyata MakotoORCID,Ogita Akira,Yamaguchi Yoshihiro,Tanaka Toshio,Fujita Ken-ichiORCID

Abstract

Nagilactone E, an antifungal agent derived from the root bark of Podocarpus nagi, inhibits 1,3-β glucan synthesis; however, its inhibitory activity is weak. Anethole, the principal component of anise oil, enhances the antifungal activity of nagilactone E. We aimed to determine the combinatorial effect and underlying mechanisms of action of nagilactone E and anethole against the budding yeast Saccharomyces cerevisiae. Analyses using gene-deficient strains showed that the multidrug efflux pump PDR5 is associated with nagilactone E resistance; its transcription was gradually restricted in cells treated with the drug combination for a prolonged duration but not in nagilactone-E-treated cells. Green-fluorescent-protein-tagged Pdr5p was intensively expressed and localized on the plasma membrane of nagilactone-E-treated cells but not in drug-combination-treated cells. Quick-freeze deep-etch electron microscopy revealed the smoothening of intertwined fiber structures on the cell surface of drug-combination-treated cells and spheroplasts, indicating a decline in cell wall components and loss of cell wall strength. Anethole enhanced the antifungal activity of nagilactone E by enabling its retention within cells, thereby accelerating cell wall damage. The combination of nagilactone E and anethole can be employed in clinical settings as an antifungal, as well as a food preservative to restrict food spoilage.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3