Abstract
The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where patients often suffer from relapse despite antibiotic therapy. Traditional anti-staphylococcal drugs display reduced effectivity against internalised bacteria, but nanoparticles conjugated with antibiotics can overcome these challenges. In the present study, we aimed to characterise the internalisation and re-emergence of S. aureus from human endothelial cells and construct a new formulation of nanoparticles that target intracellular bacteria. Using an in vitro infection model, we demonstrated that S. aureus invades and persists within endothelial cells, mediated through bacterial extracellular surface adhesion, Fibronectin-binding protein A/B. After internalising, S. aureus localises to vacuoles as determined by transmission electron microscopy. Viable S. aureus emerges from endothelial cells after 48 h, supporting the notion that intracellular persistence contributes to infection relapses during bloodstream infections. Poly lactic-co-glycolic acid nanoparticles were formulated using a water-in-oil double emulsion method, which loaded 10% vancomycin HCl with 82.85% ± 12 encapsulation efficiency. These non-toxic nanoparticles were successfully taken up by cells and demonstrated a biphasic controlled release of 91 ± 4% vancomycin. They significantly reduced S. aureus intracellular growth within infected endothelial cells, which suggests future potential applications for targeting internalised bacteria and reducing mortality associated with bacteraemia.
Funder
Science Foundation Ireland
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献