Combined Effect of Phage phT4A and Pressure-Based Strategies in the Inhibition of Escherichia coli

Author:

Pereira CarlaORCID,Marques João F.,Reis Sílvia,Costa Pedro,Martins Ana P.,Pinto Carlos A.ORCID,Saraiva Jorge A.ORCID,Almeida AdelaideORCID

Abstract

The major concern regarding the bacteriophage (or phage) therapy approach is the regrowth of bacteria after treatment, a consequence of the emergence of phage-resistant mutants. However, this limitation can be overcome by combining different therapies. In this study, the potential of combining phage phT4A with pressure storage (HS) to enhance the control of Escherichia coli and bacterial regrowth after treatment was evaluated. For that, the combining effect of phage phT4A and HS was studied and compared with storage at atmospheric pressure (AP) under refrigeration (4 °C, RF) and room temperature (RT). Initially, the effect of high hydrostatic pressure (200, 300 and 400 MPa) and HS (75 MPa), as well as refrigeration in phage phT4A viability, was determined. However, a considerable phage inactivation was verified at 200 MPa and so only HS at 75 MPa was further studied for combined treatment. The combined treatment with phage phT4A and HS was more efficient (reduction of 2.5 log CFU/mL after 7 days of storage) than phage phT4A (E. coli concentration was similar to that of the bacterial control after 7 days of storage) and HS (reduction of 1.8 log CFU/mL after 7 days of storage) applied individually. The combination of phage phT4A with refrigerated storage did not decrease E. coli levels. However, both the combination of phage with HS and the treatment with HS at 75 MPa effectively reduced E. coli concentration and prevented its regrowth. Phage phT4A viability was slightly affected during HS; however, the efficiency of the combined treatment phage-HS was not compromised. Further studies are needed to validate these findings in food products.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3