Genomic Characterization of Colistin-Resistant Isolates from the King Fahad Medical City, Kingdom of Saudi Arabia

Author:

Okdah Liliane,AlDosary Mohammed Saeed,AlMazyed Abeer,Alkhurayb Hussain Mushabbab,Almossallam Meshari,Al Obaisi Yousef sultan,Marie Mohammed Ali,Abdelrahman TamirORCID,Diene Seydina M.ORCID

Abstract

Background: Whole-genome sequencing is one of the best ways to investigate resistance mechanisms of clinical isolates as well as to detect and identify circulating multi-drug-resistant (MDR) clones or sub-clones in a given hospital setting. Methods: Here, we sequenced 37 isolates of Acinetobacter baumannii, 10 Klebsiella pneumoniae, and 5 Pseudomonas aeruginosa collected from the biobank of the hospital setting of the King Fahad Medical City. Complete phenotypic analyses were performed, including MALDI-TOF identification and antibiotic susceptibility testing. After the genome assembly of raw data, exhaustive genomic analysis was conducted including full resistome determination, genomic SNP (gSNP) analysis, and comparative genomics. Results: Almost all isolates were highly resistant to all tested antibiotics, including carbapenems and colistin. Resistome analysis revealed many antibiotic resistance genes, including those with resistance to β-lactams, aminoglycosides, macrolides, tetracyclines, sulfamids, quinolones, and phenicols. In A. baumannii isolates, the endemic carbapenemase blaOXA-23 gene was detected in 36 of the 37 isolates. Non-synonymous mutations in pmrB were detected in almost all of the isolates and likely mediated colistin resistance. Interestingly, while classical analyses, such as MLST, revealed the predominance of an ST2 clone in A. baumannii isolates, the genomic analysis revealed the presence of five circulating sub-clones and identified several isolate transmissions between patients. In the 10 K. pneumoniae isolates, several resistance genes were identified, and the observed carbapenem resistance was likely mediated by overexpression of the detected extended-spectrum-β-lactamase (ESBL) genes associated with low membrane permeability as few carbapenemase genes were detected with just blaOXA-48 in three isolates. Colistin resistance was mediated either by non-synonymous mutations in the MgrB regulator, PmrA, PmrB, and PhoQ proteins or the presence of the MCR-1 protein. Here, gSNP analysis also revealed the existence of bacterial clones and cases of isolate transmissions between patients. The five analyzed P. aeruginosa isolates were highly resistant to all tested antibiotics, including carbapenems mediated by loss or truncated OprD porin, and colistin resistance was associated with mutations in the genes encoding the PmrA, PmrB, or PhoQ proteins. Conclusion: We demonstrate here the usefulness of whole-genome sequencing to exhaustively investigate the dissemination of MDR isolates at the sub-clone level. Thus, we suggest implementing such an approach to monitor the emergence and spread of new clones or sub-clones, which classical molecular analyses cannot detect. Moreover, we recommend increasing the surveillance of the endemic and problematic colistin resistance mcr-1 gene to avoid extensive dissemination.

Funder

the research center at King Fahd Medical City, Riyadh, Internal Research Fund

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference35 articles.

1. Antibiotic Resistance: A Public Health Crisis;Lushniak;Public Health Rep.,2014

2. Carbapenemase-Producing Klebsiella Pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance;Pitout;Antimicrob. Agents Chemother.,2015

3. Epidemiology of Carbapenem Resistant Klebsiella Pneumoniae Infections in Mediterranean Countries;Girmenia;Mediterr. J. Hematol. Infect. Dis.,2016

4. Colistin: An Update on the Antibiotic of the 21st Century;Biswas;Expert Rev. Anti-Infect. Ther.,2012

5. Antibiotic Activity of Bacillus Polymyxa;Benedict;J. Bacteriol.,1947

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3