Multidrug-Resistant Salmonella Species and Their Mobile Genetic Elements from Poultry Farm Environments in Malaysia

Author:

Syed Abu Thahir Syahidiah1ORCID,Rajendiran Sakshaleni1ORCID,Shaharudin Rafiza1ORCID,Veloo Yuvaneswary1ORCID

Affiliation:

1. Environmental Health Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Setia Alam, Shah Alam 40107, Malaysia

Abstract

The prevalence and persistent outbreaks of multidrug-resistant (MDR) Salmonella in low-income countries have received growing attention among the public and scientific community. Notably, the excessive use of antibiotics in chicken feed for the purpose of treatment or as prophylaxis in the poultry industry have led to a rising rate of antimicrobial resistance. Therefore, this study aimed to determine the presence of antimicrobial-resistant Salmonella species and its mobile genetic elements from soil and effluent samples of 33 randomly selected poultry farms in Selangor, Malaysia. Salmonella species were isolated on selective media (CHROMagar™ Salmonella). VITEK® 2 system was used to identify the isolates and their antimicrobial susceptibility. Subsequently, eight isolates were subjected to the whole genome sequencing (WGS). Based on the results, Salmonella spp. was detected in 38.1% (24/63) of samples, with the highest resistance to ampicillin (62.5%), followed by ampicillin/sulbactam (50.0%) and ciprofloxacin (45.8%). Meanwhile, the identified serovars were Salmonella enterica subspecies enterica serovar Weltevreden (S. Weltevreden), S. Jedburgh, and S. Brancaster. The most prevalent resistance genes detected include qnrS1, blaTEM-176, dfrA14, and tet(A). The IncX1 plasmid, with encoded resistance genes, was also detected in four isolates. Furthermore, mutations in the quinolone resistant-determining regions (QRDR) were discovered, specifically in the gyrA, gyrB, and parC genes. In short, surveillance such as continuous monitoring of antimicrobial resistance and emerging trends in resistance patterns through farm environmental samples could provide information to formulate public health interventions for effective infection prevention and disease control.

Funder

Kementerian Kesihatan Malaysia

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference90 articles.

1. Ashurst, J.V., Truong, J., and Woodbury, B. (2022). StatPearls, StatPearls Publishing.

2. Baron, S. (1996). Medical Microbiology, University of Texas Medical Branch at Galveston. Chapter 21.

3. Invasive Nontyphoidal Salmonella Disease: Epidemiology, Pathogenesis and Diagnosis;Gordon;Curr. Opin. Infect. Dis.,2011

4. The Global Burden of Non-Typhoidal Salmonella Invasive Disease: A Systematic Analysis for the Global Burden of Disease Study 2017;Stanaway;Lancet Infect. Dis.,2019

5. (2022, September 13). Salmonella (Non-Typhoidal). Available online: https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3