Imipenem Resistance Mediated by blaOXA-913 Gene in Pseudomonas aeruginosa

Author:

Moon Dong-ChanORCID,Mechesso Abraham Fikru,Kang Hee-Young,Kim Su-Jeong,Choi Ji-Hyun,Song Hyun-Ju,Yoon Soon-Seek,Lim Suk-Kyung

Abstract

Treatment of infectious diseases caused by carbapenem-resistant Pseudomonas aeruginosa is becoming a greater challenge. This study aimed to identify the imipenem resistance mechanism in P. aeruginosa isolated from a dog. Minimum Inhibitory Concentration (MIC) was determined by the broth microdilution method according to the Clinical and Laboratory Standards Institute recommendations. We performed polymerase chain reaction and whole-genome sequencing to detect carbapenem resistance genes. Genomic DNA of P. aeruginosa K19PSE24 was sequenced via the combined analysis of 20-kb PacBio SMRTbell and PacBio RS II. Peptide-Peptide Nucleic Acid conjugates (P-PNAs) targeting the translation initiation region of blaOXA-913 were synthesized. The isolate (K19PSE24) was resistant to imipenem and piperacillin/tazobactam yet was susceptible to most of the tested antimicrobials. Whole-genome sequencing revealed that the K19PSE24 genome comprised a single contig amounting to 6,815,777 base pairs, with 65 tRNA and 12 rRNA genes. K19PSE24 belonged to sequence type 313 and carried the genes aph(3)-IIb, fosA, catB7, crpP, and blaOXA-913 (an allele deposited in GenBank but not described in the literature). K19PSE24 also carried genes encoding for virulence factors (exoenzyme T, exotoxin A, and elastase B) that are associated with adhesion, invasion, and tissue lysis. Nevertheless, we did not detect any of the previously reported carbapenem resistance genes. This is the first report of the blaOXA-913 gene in imipenem-resistant P. aeruginosa in the literature. Notably, no viable colonies were found after co-treatment with imipenem (2 µg/mL) and either of the P-PNAs (12.5 µM or 25 µM). The imipenem resistance in K19PSE24 was primarily due to blaOXA-913 gene carriage.

Funder

Animal and Plant Quarantine Agency

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3