Adding Two Antimicrobial Glasses to an Endodontic Sealer to Prevent Bacterial Root Canal Reinfection: An In Vivo Pilot Study in Dogs

Author:

Zubizarreta-Macho ÁlvaroORCID,Rico-Romano Cristina,Fernández-Aceñero María JesúsORCID,Mena-Álvarez JesúsORCID,Cabal BelénORCID,Díaz Luis Antonio,Torrecillas Ramón,Moya José Serafín,López-Píriz Roberto

Abstract

Current endodontic procedures continue to be unsuccessful for completely removing pathogens present inside the root canal system, which can lead to recurrent infections. In this study, we aimed to assess the antimicrobial capacity and tissue response of two inorganic bactericidal additives incorporated into a paste root canal sealer on contaminated root dentin in vivo. An experimental study was performed in 30 teeth of five Beagle dogs. After inducing microbiological contamination, root canal systems were treated by randomly incorporating one of two antimicrobial additives into a commercial epoxy-amine resin sealer (AH Plus), i.e., G3T glass-ceramic (n = 10) and ZnO-enriched glass (n = 10); 10 samples were randomized as a control group. After having sacrificed the animals, microbiological, radiological, and histological analyses were performed, which were complemented with an in vitro bactericidal test and characterization by field emission scanning electron microscopy. The tested groups demonstrated a non-significant microbiological reduction in the postmortem periapical index values between the control group and the bactericidal glass-ceramic group (p = 0.885), and between the control group and the ZnO-enriched glass group (p = 0.169). The histological results showed low values of inflammatory infiltrate, and a healing pattern characterized by fibrosis in 44.4% of the G3T glass-ceramic and 60.0% of ZnO-enriched glass. Bactericidal glassy additives incorporated in this root canal sealer are safe and effective in bacterial reduction.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3