Putative Antimicrobial Peptides of the Posterior Salivary Glands from the Cephalopod Octopus vulgaris Revealed by Exploring a Composite Protein Database

Author:

Almeida DanielaORCID,Domínguez-Pérez DanyORCID,Matos Ana,Agüero-Chapin GuillerminORCID,Osório HugoORCID,Vasconcelos VitorORCID,Campos Alexandre,Antunes AgostinhoORCID

Abstract

Cephalopods, successful predators, can use a mixture of substances to subdue their prey, becoming interesting sources of bioactive compounds. In addition to neurotoxins and enzymes, the presence of antimicrobial compounds has been reported. Recently, the transcriptome and the whole proteome of the Octopus vulgaris salivary apparatus were released, but the role of some compounds—e.g., histones, antimicrobial peptides (AMPs), and toxins—remains unclear. Herein, we profiled the proteome of the posterior salivary glands (PSGs) of O. vulgaris using two sample preparation protocols combined with a shotgun-proteomics approach. Protein identification was performed against a composite database comprising data from the UniProtKB, all transcriptomes available from the cephalopods’ PSGs, and a comprehensive non-redundant AMPs database. Out of the 10,075 proteins clustered in 1868 protein groups, 90 clusters corresponded to venom protein toxin families. Additionally, we detected putative AMPs clustered with histones previously found as abundant proteins in the saliva of O. vulgaris. Some of these histones, such as H2A and H2B, are involved in systemic inflammatory responses and their antimicrobial effects have been demonstrated. These results not only confirm the production of enzymes and toxins by the O. vulgaris PSGs but also suggest their involvement in the first line of defense against microbes.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference113 articles.

1. Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions

2. Cephalopod genomics: A plan of strategies and organization

3. The Study of Deep-Sea Cephalopods;Hoving,2014

4. Flight of the vampire: Ontogenetic gait-transition in vampyroteuthis infernalis (Cephalopoda: Vampyromorpha);Seibel;J. Exp. Biol.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3