Serving Two Masters: Effect of Escherichia coli Dual Resistance on Antibiotic Susceptibility

Author:

Jeje Olusola1ORCID,Ewunkem Akamu J.2,Jeffers-Francis Liesl K.1ORCID,Graves Joseph L.1ORCID

Affiliation:

1. Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA

2. Department of Biological Sciences, Winston Salem State University, 601 S Martin Luther King Jr Drive, Winston Salem, NC 27110, USA

Abstract

The prevalence of multidrug-resistant bacteria and their increased pathogenicity has led to a growing interest in metallic antimicrobial materials and bacteriophages as potential alternatives to conventional antibiotics. This study examines how resistance to excess iron (III) influences the evolution of bacteriophage resistance in the bacterium Escherichia coli. We utilized experimental evolution in E. coli to test the effect of the evolution of phage T7 resistance on populations resistant to excess iron (III) and populations without excess iron resistance. Phage resistance evolved rapidly in both groups. Dual-resistant (iron (III)/phage) populations were compared to their controls (excess iron (III)-resistant, phage-resistant, no resistance to either) for their performance against each stressor, excess iron (III) and phage; and correlated resistances to excess iron (II), gallium (III), silver (I) and conventional antibiotics. Excess iron (III)/phage-resistant populations demonstrated superior 24 h growth compared to all other populations when exposed to increasing concentrations of iron (II, III), gallium (III), ampicillin, and tetracycline. No differences in 24 h growth were shown between excess iron (III)/phage-resistant and excess iron (III)-resistant populations in chloramphenicol, sulfonamide, and silver (I). The genomic analysis identified selective sweeps in the iron (III) resistant (rpoB, rpoC, yegB, yeaG), phage-resistant (clpX →/→ lon, uvaB, yeaG, fliR, gatT, ypjF, waaC, rpoC, pgi, and yjbH) and iron (III)/phage resistant populations (rcsA, hldE, rpoB, and waaC). E. coli selected for resistance to both excess iron (III) and T7 phage showed some evidence of a synergistic effect on various components of fitness. Dual selection resulted in correlated resistances to ionic metals {iron (II), gallium (III), and silver (I)} and several conventional antibiotics. There is a likelihood that this sort of combination antimicrobial treatment may result in bacterial variants with multiple resistances.

Funder

NSF

NSF BEACON Center for the Study of Evolution

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference58 articles.

1. Evolution and ecology of antibiotic resistance genes;Aminov;FEMS Microbiol. Lett.,2007

2. A Review on Antibiotic Resistance: Alarm Bells are Ringing;Hussain;Cureus,2017

3. Combatting antimicrobial resistance globally;Sugden;Nat. Microbiol.,2016

4. Graves, J.L. (2021). Antimicrobial Nanomaterials: Principles and Applications, Elseveir.

5. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa;Chan;Sci. Rep.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3