Effects of Sulfamethoxazole and Florfenicol on Growth, Antioxidant Capacity, Immune Responses and Intestinal Microbiota in Pacific White Shrimp Litopenaeus vannamei at Low Salinity

Author:

Chen Yunsong1,Zhou Li1,Yu Qiuran2,Li Erchao2ORCID,Xie Jia1ORCID

Affiliation:

1. Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, 58 Renmin Road, Haikou 570228, China

2. School of Life Sciences, East China Normal University, Shanghai 200241, China

Abstract

Antibiotic residue may pose a serious risk to aquaculture, and the culture of Litopenaeus vannamei in a low-salinity environment is a growing trend over the world. Here, we aimed to understand the combined effect of low salinity and sulfamethoxazole (SMZ) and florfenicol (FLO) antibiotics on L. vannamei. The growth performance, immune functions, antioxidant capacity and intestinal microbiota were investigated. Compared with the control group, the weight gain and survival rate significantly decreased (p < 0.05) in shrimp after they were exposed to low-salinity (salinity 3) water and the mixture of antibiotics and low-salt conditions for 28 days. The antioxidant activities of SOD and T-AOC, shown at low salinity and in the higher concentration of the SMZ treatment group (SMZH), were significantly decreased, while the GST activity was significantly increased in each treatment group in comparison with the control group. The expression of immune-related genes, including TOLL, LvIMD, PPO and HSP, in the low concentration of the SMZ treatment group (SMZL) was higher than that in the other groups. The diversity of intestine microbiota was disturbed with a lower Shannon index in the low-salinity and SMZH groups, and a higher Simpson index in the SMZH group. Proteobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in the gut of L. vannamei. At the genus level, Microbacterium, Shewanella, Aeromonas, Acinetobacter, Gemmobacter, Paracoccus and Lysobacter were significantly decreased in the low-salinity group. However, the abundance of opportunistic pathogens belonging to the genus Aeromonas in the FLO group was increased. The predicted microbe-mediated functions showed that the pathway for “amino acid metabolism” and “replication and repair” was significantly inhibited in both the low-salinity and antibiotic-exposed groups. All the findings in this study indicate that the combined effect of antibiotics and low salinity on L. vannamei negatively impacted the physiological and intestinal microbiota functions.

Funder

High-Level Talent Support Project of Basic and Applied Basic Research Plan (Natural Science Field) of Hainan Province

initial fund from Hainan University for R & D

Research and Development Program Projects in Key Areas of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3