Lower Concentrations of Amphotericin B Combined with Ent-Hardwickiic Acid Are Effective against Candida Strains

Author:

Teixeira Maria V. Sousa1,Aldana-Mejía Jennyfer A.1ORCID,da Silva Ferreira Márcia E.1ORCID,Furtado Niege A. J. Cardoso1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, Brazil

Abstract

Life-threatening Candida infections have increased with the COVID-19 pandemic, and the already limited arsenal of antifungal drugs has become even more restricted due to its side effects associated with complications after SARS-CoV-2 infection. Drug combination strategies have the potential to reduce the risk of side effects without loss of therapeutic efficacy. The aim of this study was to evaluate the combination of ent-hardwickiic acid with low concentrations of amphotericin B against Candida strains. The minimum inhibitory concentration (MIC) values were determined for amphotericin B and ent-hardwickiic acid as isolated compounds and for 77 combinations of amphotericin B and ent-hardwickiic acid concentrations that were assessed by using the checkerboard microdilution method. Time–kill assays were performed in order to assess the fungistatic or fungicidal nature of the different combinations. The strategy of combining both compounds markedly reduced the MIC values from 16 µg/mL to 1 µg/mL of amphotericin B and from 12.5 µg/mL to 6.25 µg/mL of ent-hardwickiic acid, from isolated to combined, against C. albicans resistant to azoles. The combination of 1 µg/mL of amphotericin B with 6.25 µg/mL of ent-hardwickiic acid killed all the cells of the same strain within four hours of incubation.

Funder

São Paulo Research Foundation, FAPESP

Coordination for the Improvement of Higher Education Personnel

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3