Affiliation:
1. Adelson School of Medicine, Ariel University, Ariel 40700, Israel
2. Leumit Health Services, Tel Aviv 64738, Israel
3. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
Abstract
Background: The susceptibility to SARS-CoV-2 infection is complex and not yet fully elucidated, being related to many variables; these include human microbiome and immune status, which are both affected for a long period by antibiotic use. We therefore aimed to examine the association of previous antibiotic consumption and SARS-CoV-2 infection in a large-scale population-based study with control of known confounders. Methods: A matched case–control study was performed utilizing the electronic medical records of a large Health Maintenance Organization. Cases were subjects with confirmed SARS-CoV-2 infection (n = 31,260), matched individually (1:4 ratio) to controls without a positive SARS-CoV-2 test (n = 125,039). The possible association between previous antibiotic use and SARS-CoV-2 infection was determined by comparing antibiotic consumption in the previous 6 and 12 months between the cases and controls. For each antibiotic consumed we calculated the odds ratio (OR) for documented SARS-CoV-2 infection, 95% confidence interval (CI), and p-value using univariate and multivariate analyses. Results: The association between previous antibiotic consumption and SARS-CoV-2 infection was complex and bi-directional. In the multivariate analysis, phenoxymethylpenicillin was associated with increased rate of SARS-CoV-2 infection (OR 1.110, 95% CI: 1.036–1.191) while decreased rates were associated with previous consumption of trimethoprim-sulfonamides (OR 0.783, 95% CI: 0.632–0.971) and azithromycin (OR 0.882, 95% CI: 0.829–0.938). Fluroquinolones were associated with decreased rates (OR 0.923, 95% CI: 0.861–0.989) only in the univariate analysis. Previous consumption of other antibiotics had no significant association with SARS-CoV-2 infection. Conclusions: Previous consumption of certain antibiotic agents has an independent significant association with increased or decreased rates of SARS-CoV-2 infection. Plausible mechanisms, that should be further elucidated, are mainly antibiotic effects on the human microbiome and immune modulation.
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology