Fungal-Mediated Silver Nanoparticle and Biochar Synergy against Colorectal Cancer Cells and Pathogenic Bacteria

Author:

Alqaraleh Moath1,Khleifat Khaled M.23ORCID,Abu Hajleh Maha N.4ORCID,Farah Husni S.2,Ahmed Khaled Abdul-Aziz2

Affiliation:

1. Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan

2. Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan

3. Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan

4. Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan

Abstract

Background: Silver nanoparticles (AgNPs) are attractive substrates for new medicinal treatments. Biochar is pyrolyzed biomass. Its porous architecture allows it to hold and gather minuscule particles, through which nanoparticles can accumulate in its porous structure. This study examined AgNPs’ antibacterial and anticancer properties alone and combined with biochar. Methods: The fungus Emericella dentata was responsible for biosynthesis of AgNPs. The characterization of AgNPs using STEM images and a Zetasizer was carried out. Accordingly, the antibacterial and antiproliferation activity of AgNPs and biochar was studied using MIC and MTT assays, respectively. To evaluate the antiangiogenic and anti-inflammatory effects of AgNPs with biochar, VEGF and cytokines including TNF alpha, IL-6 and IL-beta were tested using an ELISA assay. Results: The size of the AgNPs ranged from 10 to 80 nm, with more than 70% of them being smaller than 40 nm. The combination of AgNPs and biochar enhanced the antibacterial activity against all tested bacteria. Furthermore, this combination showed antiproliferative properties against HT29 cancer cells with high selectivity to fibroblasts at low concentrations. AgNPs with biochar significantly reduced VEGF and proinflammatory cytokine expression levels. Conclusions: Biochar and AgNPs may be novel treatments for bacteria and colorectal cancer cells, according to the current findings.

Funder

Deanship of Scientific Research at Al-Ahliyya Amman University

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3