Salmonella Prophages, Their Propagation, Host Specificity and Antimicrobial Resistance Gene Transduction

Author:

Trofeit Lisa1,Sattler Elisabeth1,Künz Johannes1,Hilbert Friederike1ORCID

Affiliation:

1. Institute of Food Safety, University of Veterinary Medicine, 1210 Vienna, Austria

Abstract

Salmonella enterica subsp. enterica is a zoonotic bacterial pathogen that causes foodborne outbreaks in humans. Lytic bacteriophages to control Salmonella in food production are already being used in scientific studies and some are commercially available. However, phage application is still controversial. In addition to virulent phages, which are used in phage therapy and lyse the bacterial host, lysogenic phages coexist in the environment and can reside as prophages in the bacterial host. Therefore, information about Salmonella prophages is essential to understand successful phage therapy. In 100 Salmonella food isolates of the serovars Enteritidis and Typhimurium, we propagated prophages by oxidative stress. In isolates of the serovars Typhimurium and Enteritidis, 80% and 8% prophages could be activated, respectively. In the phage lysates from the serovar Typhimurium, the following antibiotic resistance genes or gene fragments were detected by PCR: sul1, sul2, blaTEM, strA and cmlA; however, no tetA,B,C, blaOXA, blaCMY, aadA1, dfr1,2 or cat were detected. In contrast, no resistance genes were amplified in the phage lysates of the serovar Enteritidis. None of the phage lysates was able to transduce phenotypic resistance to WT 14028s. Most of the prophage lysates isolated were able to infect the various Salmonella serovars tested. The high abundance of prophages in the genome of the serovar Typhimurium may counteract phage therapy through phage resistance and the development of hybrid phages.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3