Steady-State Piperacillin Concentrations in the Proximity of an Orthopedic Implant: A Microdialysis Porcine Study

Author:

Lilleøre Johanne Gade12ORCID,Jørgensen Andrea René12,Knudsen Martin Bruun12ORCID,Hanberg Pelle12,Öbrink-Hansen Kristina13ORCID,Tøstesen Sara Kousgaard12ORCID,Søballe Kjeld14,Stilling Maiken124,Bue Mats124ORCID

Affiliation:

1. Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark

2. Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark

3. Department of Infectious Diseases, Internal Medicine, Gødstrup Hospital, 7400 Herning, Denmark

4. Department of Orthopedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark

Abstract

Implant-associated osteomyelitis is one of the most feared complications following orthopedic surgery. Although the risk is low, sufficient antibiotic protection of the implant surface is important. The aim of this study was to assess steady-state piperacillin concentrations in the proximity of an orthopedic implant. Time above the minimal inhibitory concentration (fT>MIC) was evaluated for MIC of 8 (low target) and 16 μg/mL (high target). Six female pigs received an intravenous bolus infusion of 4 g/0.5 g piperacillin/tazobactam over 30 min every 6 h. Steady state was assumed achieved in the third dosing interval (12–18 h). Microdialysis catheters were placed in a cannulated screw in the proximal tibial cancellous bone, in cancellous bone next to the screw, and in cancellous bone on the contralateral tibia. Dialysates were collected from time 12 to 18 h and plasma samples were collected as reference. For the low piperacillin target (8 µg/mL), comparable mean fT>MIC across all the investigated compartments (mean range: 54–74%) was found. For the high target (16 µg/mL), fT>MIC was shorter inside the cannulated screw (mean: 16%) than in the cancellous bone next to the screw and plasma (mean range: 49–54%), and similar between the two cancellous bone compartments. To reach more aggressive piperacillin fT>MIC targets in relation to the implant, alternative dosing regimens such as continuous infusion may be considered.

Funder

Novo Nordisk Foundation

Kirsten and Freddy Johansen Foundation

Inge and Asker Larsen Foundation

Fund of 1870

Carl and Ellen Hertz Foundation

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3