Affiliation:
1. Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
2. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
Abstract
Avian pathogenic Escherichia coli (APEC) is responsible for significant economic losses in the poultry industry. This study aimed to molecularly detect carbapenem-resistant co-harboring mcr-1 avian pathogenic E. coli in broiler chickens infected with colibacillosis. A total of 750 samples were collected from colibacillosis-infected broilers, and conventional microbiological techniques were used to isolate and identify APEC. MALDI-TOF and virulence-associated genes (VAGs) were used for further identification. Phenotypic carbapenem resistance profiling was followed by molecular detection of carbapenem resistance genes (CRGs) and other resistance genes through PCR using specific primers. Isolates were also subjected to PCR for O typing, followed by allele-specific PCR to detect sequence type (ST) 95. Results showed that 154 (37%) isolates were confirmed as APEC, with 13 (8.4%) isolates found to be carbapenem-resistant (CR)-APEC. Among CR-APEC isolates, 5 (38%) were observed to co-harbor mcr-1. All CR-APEC showed the presence of five markers (ompT, hylF, iutA, iroN, and iss) APEC VAGs, and 89% of CR-APEC isolates displayed O78 type. Furthermore, 7 (54%) CR-APEC isolates were observed with ST95, all displaying O78 type. These results suggest that the improper use of antibiotics in poultry production systems is contributing to the emergence of pathogens such as CR-APEC co-harboring the mcr-1 gene.
Funder
Yunnan major science and technology project
Pakistan Science Foundation
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology