Effective Antimicrobial Solutions for Eradicating Multi-Resistant and β-Lactamase-Producing Nosocomial Gram-Negative Pathogens

Author:

Meade ElaineORCID,Savage Micheal,Garvey MaryORCID

Abstract

Antimicrobial resistance (AMR) remains one of the greatest public health-perturbing crises of the 21st century, where species have evolved a myriad of defence strategies to resist conventional therapy. The production of extended-spectrum β-lactamase (ESBL), AmpC and carbapenemases in Gram-negative bacteria (GNB) is one such mechanism that currently poses a significant threat to the continuity of first-line and last-line β-lactam agents, where multi-drug-resistant GNB currently warrant a pandemic on their own merit. The World Health Organisation (WHO) has long recognised the need for an improved and coordinated global effort to contain these pathogens, where two factors in particular, international travel and exposure to antimicrobials, play an important role in the emergence and dissemination of antibiotic-resistant genes. Studies described herein assess the resistance patterns of isolated nosocomial pathogens, where levels of resistance were detected using recognised in vitro methods. Additionally, studies conducted extensively investigated alternative biocide (namely peracetic acid, triameen and benzalkonium chloride) and therapeutic options (specifically 1,10-phenanthroline-5,6-dione), where the levels of induced endotoxin from E. coli were also studied for the latter. Antibiotic susceptibility testing revealed there was a significant association between multi-drug resistance and ESBL production, where the WHO critical-priority pathogens, namely E. coli, K. pneumoniae, A. baumannii and P. aeruginosa, exhibited among the greatest levels of multi-drug resistance. Novel compound 1,10-phenanthroline-5,6-dione (phendione) shows promising antimicrobial activity, with MICs determined for all bacterial species, where levels of induced endotoxin varied depending on the concentration used. Tested biocide agents show potential to act as intermediate-level disinfectants in hospital settings, where all tested clinical isolates were susceptible to treatment.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3