Wastewater-Based Surveillance of Antibiotic Resistance Genes Associated with Tuberculosis Treatment Regimen in KwaZulu Natal, South Africa

Author:

Mtetwa Hlengiwe N.,Amoah Isaac D.,Kumari Sheena,Bux FaizalORCID,Reddy PoovendhreeORCID

Abstract

Essential components of public health include strengthening the surveillance of infectious diseases and developing early detection and prevention policies. This is particularly important for drug-resistant tuberculosis (DR-TB), which can be explored by using wastewater-based surveillance. This study aimed to use molecular techniques to determine the occurrence and concentration of antibiotic-resistance genes (ARGs) associated with tuberculosis (TB) resistance in untreated and treated wastewater. Raw/untreated and treated (post-chlorination) wastewater samples were taken from three wastewater treatment plants (WWTPs) in South Africa. The ARGs were selected to target drugs used for first- and second-line TB treatment. Both conventional polymerase chain reaction (PCR) and the more advanced droplet digital PCR (ddPCR) were evaluated as surveillance strategies to determine the distribution and concentration of the selected ARGs. The most abundant ARG in the untreated wastewater was the rrs gene, associated with resistance to the aminoglycosides, specifically streptomycin, with median concentration ranges of 4.69–5.19 log copies/mL. In contrast, pncA gene, associated with resistance to the TB drug pyrazinamide, was the least detected (1.59 to 2.27 log copies/mL). Resistance genes associated with bedaquiline was detected, which is a significant finding because this is a new drug introduced in South Africa for the treatment of multi-drug resistant TB. This study, therefore, establishes the potential of molecular surveillance of wastewater for monitoring antibiotic resistance to TB treatment in communities.

Funder

South African Medical Research Council (SAMRC) as a sub-grant received from the Bill and Melinda Gates Foundation

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3