Biphasic Medium Using Nicotinamide for Detection of Pyrazinamide Resistance in Mycobacterium tuberculosis

Author:

Thuansuwan Waraporn1,Chuchottaworn Charoen2,Nakajima Chie3,Suzuki Yasuhiko3ORCID,Chaichanawongsaroj Nuntaree4

Affiliation:

1. Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand

2. Central Chest Institute of Thailand, Bangkasor, Muang, Nonthaburi 11000, Thailand

3. International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan

4. Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand

Abstract

Reliable drug susceptibility testing of pyrazinamide (PZA) is technically difficult, since PZA activity is pH sensitive. The aim of this study was to evaluate a biphasic medium assay (BMA) for the reliable detection of PZA resistance in Mycobacterium tuberculosis (MTB) using nicotinamide (NIC) as a surrogate for PZA and identifying the appropriate cut-off value for the assay. The PZA susceptibility of 122 multidrug-resistant tuberculosis (MDR-TB) isolates and 39 drug-susceptible tuberculosis (DS-TB) isolates was examined using the BMA with NIC at four different concentrations (250, 500, 1000, and 2000 mg/L) and comparing the results with results from the BACTEC MGIT 960 reference method. Out of 122 MDR-TB isolates, 40 were identified as resistant by the BACTEC MGIT 960 system, of which 92.5% contained mutations within their pncA gene plus promoter region. A minimum inhibitory concentration of NIC ≥ 1000 mg/L was used as the cut-off concentration to define resistance in correlation with the MGIT 960 outcomes. NIC-BMA had a sensitivity of 90.91%, a specificity of 100%, and an accuracy of 97.52% compared with the MGIT 960 method. NIC-BMA is a promising assay to screen PZA resistance in microbiological laboratories without automation or advanced molecular instruments.

Funder

Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University

Japan Agency for Medical Research and Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3