Ciprofloxacin Concentrations 100-Fold Lower than the MIC Can Select for Ciprofloxacin Resistance in Neisseria subflava: An In Vitro Study

Author:

Gestels Zina1,Abdellati Saïd2ORCID,Kenyon Chris13ORCID,Manoharan-Basil Sheeba Santhini1ORCID

Affiliation:

1. Sexually Transmitted Infections Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium

2. Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium

3. Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town 7700, South Africa

Abstract

Neisseria gonorrhoeae can acquire antimicrobial resistance (AMR) through horizontal gene transfer (HGT) from other Neisseria spp. such as commensals like Neisseria subflava. Low doses of antimicrobials in food could select for AMR in N. subflava, which could then be transferred to N. gonorrhoeae. In this study, we aimed to determine the lowest concentration of ciprofloxacin that can induce ciprofloxacin resistance (minimum selection concentration—MSC) in a N. subflava isolate (ID-Co000790/2, a clinical isolate collected from a previous community study conducted at ITM). In this study, Neisseria subflava was serially passaged on gonococcal (GC) medium agar plates containing ciprofloxacin concentrations ranging from 1:100 to 1:10,000 below its ciprofloxacin MIC (0.006 µg/mL) for 6 days. After 6 days of serial passaging at ciprofloxacin concentrations of 1/100th of the MIC, 24 colonies emerged on the plate containing 0.06 µg/mL ciprofloxacin, which corresponds to the EUCAST breakpoint for N. gonorrhoeae. Their ciprofloxacin MICs were between 0.19 to 0.25 µg/mL, and whole genome sequencing revealed a missense mutation T91I in the gyrA gene, which has previously been found to cause reduced susceptibility to fluoroquinolones. The N. subflava MSCde novo was determined to be 0.06 ng/mL (0.00006 µg/mL), which is 100×-fold lower than the ciprofloxacin MIC. The implications of this finding are that the low concentrations of fluoroquinolones found in certain environmental samples, such as soil, river water, and even the food we eat, may be able to select for ciprofloxacin resistance in N. subflava.

Funder

SOFI 2021 grant—“PReventing the Emergence of untreatable STIs via radical Prevention”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3