Compound Prioritization through Meta-Analysis Enhances the Discovery of Antimicrobial Hits against Bacterial Pathogens

Author:

Deblais Loic,Rajashekara Gireesh

Abstract

The development of informatic tools to improve the identification of novel antimicrobials would significantly reduce the cost and time of drug discovery. We previously screened several plant (Xanthomonas sp., Clavibacter sp., Acidovorax sp., and Erwinia sp.), animal (Avian pathogenic Escherichia coli and Mycoplasma sp.), and human (Salmonella sp. and Campylobacter sp.) pathogens against a pre-selected small molecule library (n = 4182 SM) to identify novel SM (hits) that completely inhibited the bacterial growth or attenuated at least 75% of the virulence (quorum sensing or biofilm). Our meta-analysis of the primary screens (n = 11) using the pre-selected library (approx. 10.2 ± 9.3% hit rate per screen) demonstrated that the antimicrobial activity and spectrum of activity, and type of inhibition (growth versus virulence inhibitors) correlated with several physico-chemical properties (PCP; e.g., molecular weight, molar refraction, Zagreb group indexes, Kiers shape, lipophilicity, and hydrogen bond donors and acceptors). Based on these correlations, we build an in silico model that accurately classified 80.8% of the hits (n = 1676/2073). Therefore, the pre-selected SM library of 4182 SM was narrowed down to 1676 active SM with predictable PCP. Further, 926 hits affected only one species and 1254 hits were active against specific type of pathogens; however, no correlation was detected between PCP and the type of pathogen (29%, 34%, and 46% were specific for animal, human foodborne and plant pathogens, respectively). In conclusion, our in silico model allowed rational identification of SM with potential antimicrobial activity against bacterial pathogens. Therefore, the model developed in this study may facilitate future drug discovery efforts by accelerating the identification of uncharacterized antimicrobial molecules and predict their spectrum of activity.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3