Phylotypic Profiling, Distribution of Pathogenicity Island Markers, and Antimicrobial Susceptibility of Escherichia coli Isolated from Retail Chicken Meat and Humans

Author:

Sadat AsmaaORCID,Ramadan HazemORCID,Elkady Mohamed A.,Hammad Amal Mahmoud,Soliman Mohamed M.ORCID,Aboelenin Salama M.ORCID,Al-Harthi Helal F.,Abugomaa AmiraORCID,Elbadawy MohamedORCID,Awad AmalORCID

Abstract

Escherichia coli (E.coli) found in retail chicken meat could be causing a wide range of infections in humans and constitute a potential risk. This study aimed to evaluate 60 E. coli isolates from retail chicken meat (n = 34) and human urinary tract infections (UTIs, n = 26) for phylogenetic diversity, presence of pathogenicity island (PAI) markers, antimicrobial susceptibility phenotypes, and antimicrobial resistance genes, and to evaluate their biofilm formation capacity. In that context, confirmed E.coli isolates were subjected to phylogrouping analysis using triplex PCR, antimicrobial susceptibility testing using the Kirby–Bauer disc diffusion method; PAI distribution was investigated by using two multiplex PCRs. Most of the chicken isolates (22/34, 64.7%) were identified as commensal E. coli (A and B1), while 12 isolates (35.3%) were classified as pathogenic virulent E. coli (B2 and D). Similarly, the commensal group dominated in human isolates. Overall, 23 PAIs were detected in the chicken isolates; among them, 39.1% (9/23) were assigned to group B1, 34.8% (8/23) to group A, 4.34% (1/23) to group B2, and 21.7% (5/23) to group D. However, 25 PAIs were identified from the human isolates. PAI IV536 was the most prevalent (55.9%, 69.2%) PAI detected in both sources. In total, 37 (61.7%) isolates of the chicken and human isolates were biofilm producers. Noticeably, 100% of E. coli isolates were resistant to penicillin and rifamycin. Markedly, all E. coli isolates displayed multiple antibiotic resistance (MAR) phenotypes, and the multiple antibiotic resistance index (MARI) among E. coli isolates ranged between 0.5 and 1. Several antibiotic resistance genes (ARGs) were identified by a PCR assay; the sul2 gene was the most prevalent (38/60, 63.3%) from both sources. Interestingly, a significant positive association (r = 0.31) between biofilm production and resistance to quinolones by the qnr gene was found by the correlation analysis. These findings were suggestive of the transmission of PAI markers and antibiotic resistance genes from poultry to humans or humans to humans through the food chain. To avoid the spread of virulent and multidrug-resistant E. coli, intensive surveillance of retail chicken meat markets is required.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3