Methods for Spatiotemporal Analysis of Human Gait Based on Data from Depth Sensors

Author:

Wagner Jakub1ORCID,Szymański Marcin1,Błażkiewicz Michalina2ORCID,Kaczmarczyk Katarzyna2ORCID

Affiliation:

1. Institute of Radioelectronics and Multimedia Technology, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

2. Chair of Physiotherapy Fundamentals, Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland

Abstract

Gait analysis may serve various purposes related to health care, such as the estimation of elderly people’s risk of falling. This paper is devoted to gait analysis based on data from depth sensors which are suitable for use both at healthcare facilities and in monitoring systems dedicated to household environments. This paper is focused on the comparison of three methods for spatiotemporal gait analysis based on data from depth sensors, involving the analysis of the movement trajectories of the knees, feet, and centre of mass. The accuracy of the results obtained using those methods was assessed for different depth sensors’ viewing angles and different types of subject clothing. Data were collected using a Kinect v2 device. Five people took part in the experiments. Data from a Zebris FDM platform were used as a reference. The obtained results indicate that the viewing angle and the subject’s clothing affect the uncertainty of the estimates of spatiotemporal gait parameters, and that the method based on the trajectories of the feet yields the most information, while the method based on the trajectory of the centre of mass is the most robust.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3