Sparse Depth-Guided Image Enhancement Using Incremental GP with Informative Point Selection

Author:

Yang Geonmo1,Lee Juhui1,Kim Ayoung2,Cho Younggun1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea

2. Department of Mechanical Engineering, Seoul National University, Seoul 01811, Republic of Korea

Abstract

We propose an online dehazing method with sparse depth priors using an incremental Gaussian Process (iGP). Conventional approaches focus on achieving single image dehazing by using multiple channels. In many robotics platforms, range measurements are directly available, except in a sparse form. This paper exploits direct and possibly sparse depth data in order to achieve efficient and effective dehazing that works for both color and grayscale images. The proposed algorithm is not limited to the channel information and works equally well for both color and gray images. However, efficient depth map estimations (from sparse depth priors) are additionally required. This paper focuses on a highly sparse depth prior for online dehazing. For efficient dehazing, we adopted iGP for incremental depth map estimation and dehazing. Incremental selection of the depth prior was conducted in an information-theoretic way by evaluating mutual information (MI) and other information-based metrics. As per updates, only the most informative depth prior was added, and haze-free images were reconstructed from the atmospheric scattering model with incrementally estimated depth. The proposed method was validated using different scenarios, color images under synthetic fog, real color, and grayscale haze indoors, outdoors, and underwater scenes.

Funder

Inha University

Korea Institute of Marine Science and Technology Promotion

Ministry of Oceans and Fisheries

National Research Foundation of Korea (NRF) grant funded by the Korea governmen

Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government

National Research Council of Science & Technology under the R&D Program of Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3