Effects of Different Native Plants on Soil Remediation and Microbial Diversity in Jiulong Iron Tailings Area, Jiangxi

Author:

Wang Qian,Sun Qiwu,Wang Wenzheng,Liu Xiangrong,Song LiguoORCID,Hou Lingyu

Abstract

Phytoremediation is an important solution to heavy metal pollution in soil. However, the impact of plants on microbial communities in contaminated soil also requires attention. Community-level physiological profiling (CLPP) based on the Biolog™ EcoPlate and high-throughput sequencing were used to study the soil microbial community in this article. The rhizosphere and bulk soil samples of six native species were collected from the iron mine tailings on Jiulong Mountain, Jiangxi Province. According to the average well color development (AWCD), all plants improved the activity and diversity of the contaminated soil microbial community to varying degrees. Cunninghamia lanceolate is considered to have good effects and led to the appearance of Cunninghamia lanceolata > Zelkova schneideriana > Toona ciliata > Alnus cremastogyne > Cyclobalanopsis myrsinifolia > Pinus elliottii. The Shannon–Wiener diversity index and principal component analysis (PCA) show that the evenness and dominance of soil microbial communities of several plants are structurally similar to those of uncontaminated soil (UNS). The results of high-throughput sequencing indicated that the bacterial community diversity of C. lanceolata, A. cremastogyne, and P. elliottii is similar to UNS, while fungal community diversity is different from UNS. C. lanceolata has a better effect on soil nutrients, C. myrsinifolia and P. elliottii may have a better effect on decreasing the Cu content. The objective of this study was to assess the influence of native plants on microbial communities in soils and the soil remediation capacity. Mortierellomycota was the key species for native plants to regulate Cu and microbial community functions. Native plants have decisive influence on microbial community diversity.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3