Effect of Particle Form and Surface Friction on Macroscopic Shear Flow Friction in Particle Flow System

Author:

Huang YuORCID,Wang Yi’an,Wang Suran

Abstract

The damage caused by landslide disasters is very significant. Among them, landslides after forest fires have been widely concerned by scholars in recent years due to their particular physical and chemical properties. This large-scale shear flow of particulate matter has similarities to fluid systems. However, due to the discontinuity of the particle system, its flow process has significant random characteristics. To investigate the random properties of particle systems, this study conducted a series of ring shear tests on four particle systems. The effects of the particle shape, normal stress, and shear velocity on the systems’ shear rheological features were investigated using experimental data. The particle form has an important effect on the macroscopic properties of the system. In a spherical particle system, the macroscopic friction fluctuation is determined by the friction of the particle surface and the system’s normal stress. The shear velocity has a minor effect on this characteristic. Three elements simultaneously influence the macroscopic friction fluctuation of a breccia particle system: the particle surface friction, system normal stress, and shear velocity. The origins of macroscopic frictional fluctuations in particle systems with various shapes are fundamentally distinct. This study contributes to a better understanding of the causes of particle system fluctuations, and establishes the theoretical foundation for the future development of disaster prevention technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3