Abstract
In this paper, the instability resulting from small perturbations of the Darcy–Bénard system is explored. An analysis based on time–periodic and spatially developing Fourier modes is adopted. The system under examination is a horizontal porous layer saturated by a fluid. The two impermeable and isothermal plane boundaries are considered to have different temperatures, so that the porous layer is heated from below. The spatial instability for the system is defined by taking into account both the spatial growth rate of the perturbation modes and their propagation direction. A comparison with the neutral stability condition determined by using the classical spatially periodic and time–evolving Fourier modes is performed. Finally, the physical meaning of the concept of spatial instability is discussed. In contrast to the classical analysis, based on spatially periodic modes, the spatial instability analysis, involving time–periodic Fourier modes, is found to lead to the conclusion that instability occurs whenever the Rayleigh number is positive.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献