Material Screening with Mass Spectrometry

Author:

Marchegiani Francesca,Ferella FrancescoORCID,Nisi Stefano

Abstract

Inductively coupled plasma mass spectrometry is a powerful analytical technique. Because of its sensitivity, accuracy, multielement capability, high throughput, rapid analysis times and low detection limits, it is able to determine simultaneously long-lived radionuclides at trace and ultra-trace levels as well as isotope ratios. It has been increasingly applied in the framework of rare events experiments like those investigating the nature of dark matter and neutrinos, where the screening and selection of extremely radiopure materials for the experimental apparatus is crucial. Here, the inductively coupled plasma mass spectrometry (ICP-MS) measurements of the chemical purity of a Cs2HfCl6 crystal scintillator used to study α decay of naturally occurring Hf isotopes and its own raw materials are reported. Moreover, in the framework of the GERDA/LEGEND experiment, an overview of the ICP-MS results to monitor the recycling process of enriched germanium scraps is shown. Significant outcomes, such as low detection limits despite the small amount of sample to analyze and fast ICP-MS results, have been achieved in response to the challenges required by modern low background experiments.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-Level Counting and Spectrometry Techniques;Detecting Environmental Radioactivity;2022

2. Status and Perspectives of 2ϵ, ϵβ+ and 2β+ Decays;Particles;2021-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3