Splitting of the Magnetic Loss Peak of Composites under External Magnetic Field

Author:

Shiryaev Artem,Rozanov Konstantin,Naboko Andrey,Artemova Anastasia,Maklakov SergeyORCID,Bobrovskii Stanislav,Petrov Dmitriy

Abstract

Composite materials filled with ferromagnetic inclusions are useful in the development of various microwave devices. The performance of such devices is determined both by material properties (such as the saturation magnetization and the permeability) and by the demagnetization effects. The paper is devoted to the study of the demagnetization effect on the permeability measurements of composites under external magnetic bias. The microwave permeability of composites filled with flake sendust (Fe-Si-Al alloy) particles is measured as a function of frequency and the external magnetic field. The measurements are carried out by the Nicolson–Ross–Weir technique in a 7/3 coaxial line in the frequency range of 0.1 to 20 GHz by a vector network analyzer. It is found that the magnetic loss peak is split under external fields of more than 1.5 kOe. The main aim of this paper is to study the causes of this splitting and to interpret the observed magnetic loss peaks. To study this effect, the samples of various thicknesses and the samples with isotropic and anisotropic orientations of particles are measured. The particles in the anisotropic samples are oriented by a strong uniform magnetic field. At a small fraction of inclusions, the permanent magnetic field is demagnetized on the individual particles rather than the whole sample. The splitting of the magnetic loss peak of the isotropic sample is caused by different orientations of particles in the sample. At a high fraction of inclusions, the permanent magnetic field is demagnetized on the whole sample and the magnetic loss peak of the isotropic sample is not split. The saturation magnetization of the material is found by measurements under the external magnetic field of the anisotropic sample.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3