Experimental Study on the Dilatancy Characteristics and Permeability Evolution of Sandstone under Different Confining Pressures

Author:

Liu Chao12,Liu Yixin23,Xie Zhicheng4,Yu Beichen2

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. State Key Laboratory of Mining Disaster Prevention and Control, Ministry of Education, Qingdao 266590, China

3. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. China Construction First Group Construction & Development Co., Ltd., Beijing 100102, China

Abstract

It is of practical significance to investigate the dilatancy and seepage characteristics of tight sandstone gas under different confining pressures for its efficient development. Therefore, fluid–solid coupling triaxial loading experiments with gas-bearing sandstone were conducted. The results showed that the gas-bearing sandstone exhibited brittle characteristics with tensile–shear composite failure. The dual logarithmic model can better characterize the sandstone strength (R2 = 0.9952), whereas the fitting effect of the linear Mohr–Coulomb criterion is poor (R2 = 0.9294). The dilatancy capacity of sandstone was negatively correlated with confining pressure, and the dilatancy index decreased by 38.4% in the form of its convex power function with the increasing confining pressure. The sandstone underwent significant damage dilatancy during the yielding stage, resulting in a significant permeability recovery, with an increase of 67.0%~70.4%, which was greater than the decrease of 9.6%~12.6% in the elastic stage. In view of the different dominant factors of permeability reduction induced by pore compaction and recovery induced by crack development, the permeability model was established with volumetric strain and radial strain as independent variables, which could better reflect the whole process of permeability evolution.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

State Key Laboratory of Mining Disaster Prevention and Control

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3