Experimental and Modeled Results Describing the Low-Concentration Acetone Adsorption onto Coconut Shell Activated Carbon

Author:

Sheng Ying1,Ren Qiang1,Dong Qingqing1

Affiliation:

1. Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China

Abstract

Polar VOCs represented by ketones deteriorate indoor air quality and affect human health. Adsorption by activated carbons can effectively remove harmful gases, but relatively little is known about the adsorption capacity of polar VOCs at a low concentration level. So, this paper adopted acetone as the typical polar VOC to test its adsorption on the coconut shell activated carbon and developed a prediction model to estimate the breakthrough time. The results will help users master the acetone adsorption behavior under realistic conditions and thus estimate the service life of the filters. The adsorption test of acetone with concentrations of 0.5, 1.0, 2.0, 3.0, and 4.0 ppm was carried out. Four adsorption isotherms, namely, Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin, were used to fit the data. The Freundlich model fitted best when was used to determine the equilibrium capacity of acetone. An approach based on the Thomas model was proposed to predict the acetone breakthrough curve. The mass transfer coefficient of acetone adsorption with a relatively high concentration (1.0–4.0 ppm) was calculated based on the Thomas model, and the relationship between the mass transfer coefficient and acetone inlet concentration was established to obtain the mass transfer coefficient of acetone at the predicted concentration. The equilibrium capacity and mass transfer coefficient were substituted into the Thomas model to predict the breakthrough curve of acetone at a lower concentration. The results showed that the shape of the predicted curve was much closer to the measured data of acetone adsorption. The relative deviation between the predicted service life and measured data was 10%, indicating that the Thomas model was suitable for predicting acetone adsorption at low concentrations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3