Affiliation:
1. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
2. International Cooperation Center of National Development and Reform Commission, Beijing 100038, China
Abstract
The transportation sector is a major contributor to carbon emissions, and managing its carbon peak is essential for China to reach the 2030 carbon peak target. This paper uses the autoregressive integrated moving average model (ARIMA) to design baseline scenarios and “double carbon” scenarios (carbon peak and carbon neutrality) based on the accounting of transportation carbon emissions in 30 provinces and cities in China to facilitate regional differentiation and forecast the development trend of transportation carbon emissions. Using the fuzzy comprehensive evaluation method, a comprehensive transportation carbon emission research and judgment system has been developed based on the forecast results. The research indicates a substantial increase in carbon dioxide (CO2) emissions from transport in China over the past 15 years, with an average growth rate of 5.9%, from 387.42 mt in 2005 to 917.00 mt in 2019. In the scenario prediction analysis, the overall carbon emission of the “two-carbon” scenario exhibits varying levels of reduction compared with the baseline scenario. According to the comprehensive research and judgment system, when the comprehensive evaluation index corresponding to the turning point year of transportation carbon emissions is greater than 0.85, and the index remains above 0.85 after the turning point, it can be judged that a region has achieved the peak of transportation carbon dioxide emissions under 95% possibility. It shows that China’s policies and strategies for carbon and emission reduction have played a significant role in transportation, but the low-carbon transformation and development still face great challenges.
Funder
Shandong Natural Science Foundation
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献