Research on Transportation Carbon Emission Peak Prediction and Judgment System in China

Author:

Sun Yanming12,Yang Yile1ORCID,Liu Shixian1,Li Qingli2

Affiliation:

1. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China

2. International Cooperation Center of National Development and Reform Commission, Beijing 100038, China

Abstract

The transportation sector is a major contributor to carbon emissions, and managing its carbon peak is essential for China to reach the 2030 carbon peak target. This paper uses the autoregressive integrated moving average model (ARIMA) to design baseline scenarios and “double carbon” scenarios (carbon peak and carbon neutrality) based on the accounting of transportation carbon emissions in 30 provinces and cities in China to facilitate regional differentiation and forecast the development trend of transportation carbon emissions. Using the fuzzy comprehensive evaluation method, a comprehensive transportation carbon emission research and judgment system has been developed based on the forecast results. The research indicates a substantial increase in carbon dioxide (CO2) emissions from transport in China over the past 15 years, with an average growth rate of 5.9%, from 387.42 mt in 2005 to 917.00 mt in 2019. In the scenario prediction analysis, the overall carbon emission of the “two-carbon” scenario exhibits varying levels of reduction compared with the baseline scenario. According to the comprehensive research and judgment system, when the comprehensive evaluation index corresponding to the turning point year of transportation carbon emissions is greater than 0.85, and the index remains above 0.85 after the turning point, it can be judged that a region has achieved the peak of transportation carbon dioxide emissions under 95% possibility. It shows that China’s policies and strategies for carbon and emission reduction have played a significant role in transportation, but the low-carbon transformation and development still face great challenges.

Funder

Shandong Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3