Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review

Author:

Liang Xiaoxia12ORCID,Zhang Ming3ORCID,Feng Guojin12ORCID,Wang Duo4,Xu Yuchun3,Gu Fengshou5ORCID

Affiliation:

1. College of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China

2. Advanced Equipment Research Institute Co., Ltd. of HEBUT, Tianjin 300401, China

3. College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK

4. Beijing Institute of Control Engineering, Beijing 100190, China

5. Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

Fault detection and diagnosis play a crucial role in ensuring the reliability and safety of modern industrial systems. For safety and cost considerations, critical equipment and systems in industrial operations are typically not allowed to operate in severe fault states. Moreover, obtaining labeled samples for fault diagnosis often requires significant human effort. This results in limited labeled data for many application scenarios. Thus, the focus of attention has shifted towards learning from a small amount of data. Few-shot learning has emerged as a solution to this challenge, aiming to develop models that can effectively solve problems with only a few samples. This approach has gained significant traction in various fields, such as computer vision, natural language processing, audio and speech, reinforcement learning, robotics, and data analysis. Surprisingly, despite its wide applicability, there have been limited investigations or reviews on applying few-shot learning to the field of mechanical fault diagnosis. In this paper, we provide a comprehensive review of the relevant work on few-shot learning in mechanical fault diagnosis from 2018 to September 2023. By examining the existing research, we aimed to shed light on the potential of few-shot learning in this domain and offer valuable insights for future research directions.

Funder

European Commission Horizon 2020

Natural Science Foundation of Hebei

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3