A Review of Deep Learning-Based Vehicle Motion Prediction for Autonomous Driving

Author:

Huang Renbo1ORCID,Zhuo Guirong1,Xiong Lu1ORCID,Lu Shouyi1ORCID,Tian Wei1ORCID

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

Abstract

Autonomous driving vehicles can effectively improve traffic conditions and promote the development of intelligent transportation systems. An autonomous vehicle can be divided into four parts: environment perception, motion prediction, motion planning, and motion control, among which the motion prediction module plays an essential role in the sustainability of autonomous driving vehicles. Vehicle motion prediction improves autonomous vehicles’ understanding of the surrounding dynamic environment, which reduces the uncertainty in the decision-making system and facilitates the implementation of an active braking system for autonomous vehicles. Currently, deep learning-based methods have become prevalent in this field as they can efficiently process complex scene information and achieve long-term prediction. These methods often follow a similar paradigm: encoding scene input to obtain the context feature, then decoding the context feature to output predictions. Recent research has proposed innovative improvement designs to enhance the primary paradigm. Thus, we review recent works based on their improvement designs and summarize them based on three criteria: scene input representation, context refinement, and prediction rationality improvement. Although most works focus on trajectory prediction, this paper also discusses new occupancy flow prediction methods. Additionally, this paper outlines commonly used datasets, evaluation metrics, and potential research directions.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3