Current Knowledge, Research Progress, and Future Prospects of Phyto-Synthesized Nanoparticles Interactions with Food Crops under Induced Drought Stress

Author:

Wahab Abdul12,Batool Farwa3,Muhammad Murad24ORCID,Zaman Wajid5ORCID,Mikhlef Rafid Magid6ORCID,Naeem Muhammad7ORCID

Affiliation:

1. Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Department of Botany, Lahore College for Women University, Lahore 54000, Punjab, Pakistan

4. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

5. Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea

6. Biotechnology Department, University of Samarra, Samarra 34010, Iraq

7. Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

Abstract

Drought stress threatens global food security and requires creative agricultural solutions. Recently, phyto-synthesized nanoparticles NPs have garnered attention as a way to reduce food crop drought. This extensive research examines how phyto-synthesized NPs improve crop growth and biochemistry in drought-stressed situations. The review begins with an introduction highlighting the urgency of addressing the agricultural challenges posed by drought. It also highlights the significance of nanoparticles synthesized from photosynthesis in this context. Its purpose is to underscore the importance of sustainable farming practices. This approach is contrasted with conventional methods, elucidating the ecological and economic advantages of phyto-synthesized NPs. This review discusses phyto-synthesized nanoparticles, including titanium dioxide, iron oxide, gold, silver, and copper. In addition, we review their ability to enhance crop growth and stress resistance. The primary focus is to elucidate the effects of phyto-synthesized NPs on plant development under drought stress. Noteworthy outcomes encompass improvements in seed germination, seedling growth, water absorption, photosynthesis, chlorophyll content, the activation of antioxidant defense mechanisms, and the modulation of hormonal responses. These results underscore the potential of phyto-synthesized NPs as agents for enhancing growth and mitigating stress. The review assesses the risks and challenges of using phyto-synthesized NPs in agriculture. Considerations include non-target organisms, soil, and environmental impacts. Further research is needed to determine the long-term effects, dangers, and benefits of phyto-synthesized NPs. Nanoparticles offer a targeted and sustainable approach for improving plant drought tolerance, outpacing traditional methods in ethics and ecological balance. Their mechanisms range from nutrient delivery to molecular regulation. However, the long-term environmental impact remains understudied. This review is critical for identifying research gaps and advancing sustainable agricultural practices amid global water scarcity.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3