Spatiotemporal Variations of Water Eutrophication and Non-Point Source Pollution Prevention and Control in the Main Stream of the Yellow River in Henan Province from 2012 to 2021

Author:

Wei Huaibin1,Wang Yao2ORCID,Liu Jing34,Cao Yongxiao2,Zhang Xinyu2

Affiliation:

1. School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

3. College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

4. School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

Abstract

Protecting the water quality of the Yellow River is of great significance to the ecological protection of the Yellow River Basin. The identification of spatiotemporal variations of the water environment and the implementation of measures to control non-point source (NPS) pollution are both key to improving the water quality. Between 2012 and 2021, we conducted assessments of eight indicators, including water temperature, dissolved oxygen (DO) and pH, chemical oxygen demand (CODMn), five-day biological oxygen demand (BOD5), total phosphorus (TP), NO3-N, and NH3-N at six sites in the main stream of the Yellow River in Henan. We explored the causes of changes in water eutrophication using multivariate statistical analysis and formulated recommendations to improve NPS pollution through adjustments in land use patterns. The results showed that temporal water eutrophication markedly decreased and it was most spatially severe in the east. The most effective control of water eutrophication was observed between 2016 and 2018. As the transition from the flood season to the non-flood season took place, the main source of NPS pollution changed from being primarily influenced by precipitation, to being predominantly attributed to agricultural runoff. We recommend addressing the increased soil erosion in the west and controlling the discharge of agricultural effluent in the east. During the flood season, the ecological interception zones can effectively intercept NPS pollution outputs. These findings offer valuable insights for future scientific management strategies to prevent and control NPS pollution in the river.

Funder

National Natural Science Foundation of China

Science and Technology Projects of Water Resources Department of Henan Province, China

China Scholarship Council

North China University of Water Resources and Electric Power Innovation Ability Improvement Project for Postgraduates

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3