A Study on the Vulnerability of the Gross Primary Production of Rubber Plantations to Regional Short-Term Flash Drought over Hainan Island

Author:

Cui WeiORCID,Xiong Qian,Zheng Yinqi,Zhao Junfu,Nie Tangzhe,Wu Lan,Sun ZhongyiORCID

Abstract

Rapidly developing droughts, including flash droughts, have occurred frequently in recent years, causing significant damage to agroforestry ecosystems, and they are expected to increase in the future due to global warming. The artificial forest area in China is the largest in the world, and its carbon budget is crucial to the global carbon sink. As the most prominent plantation plant in the tropics, the rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) ecosystem not only has important economic significance, but also has the potential to be a major natural carbon sink in hot areas. Frequent drought events have a significant impact on rubber ecosystem productivity, yet there have been few reports on the vulnerability of rubber productivity to drought. The objective of this study is to evaluate the vulnerability of rubber ecosystem gross primary production (GPP) to short-term flash drought (STFD) in Hainan Island, utilizing the localized EC-LUE model (eddy covariance–light use efficiency) validated by flux tower observations as the research tool to conduct the scenario simulations which defined by standard relative humidity index (SRHI), in a total of 96 scenarios (timing × intensity). The results show that, in terms of time, the rubber ecosystem in Hainan Island has the highest vulnerability to STFD during the early rainy season and the lowest at the end of the rainy season. From the dry season to the rainy season, the impact of STFD gradually extends to the northeast. Spatially, the vulnerability of the northern island is higher than that of the southern island and that of the western part is higher than that of eastern Hainan Island. With the increase in STFD intensity, the spatial distribution center of the vulnerability of rubber ecosystem GPP in Hainan Island gradually moves southward. The spatiotemporal pattern of the vulnerability of the rubber ecosystem GPP to STFD over Hainan Island plotted by this study is expected to provide decision makers with more accurate information on the prevention and control of drought disaster risk in rubber ecosystems.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3