Abstract
This study investigates the effects of root distributions and stress paths on the shear strength of root-soil composites using a consolidated-undrained (CU) triaxial test. On the basis of the limit equilibrium, two root reinforcement coefficients (n and m) are proposed for characterizing the effects of shear strength parameters on the principal stress considering different root distribution angles and root diameters. Then, n and m are introduced into the conventional limit equilibrium equation to develop a new limit equilibrium equation for root-soil composites. The results demonstrate that the root distribution angles (α) and root diameters (d) affect the shear strength of the root-soil composites. Under a consolidated-undrained condition, the effective cohesion (crs′) of the rooted soil is high and decreases in the order of 90°, 0°, 30° and 60°. For the same root distribution angle, crs′ increases with the increasing root diameter. Meanwhile, the effective internal friction angle (φrs′) changes slightly. The failure principal stress of the root-soil composites is positively correlated with n and m. Furthermore, the deformation of the samples indicates that the run-through rate of α = 90° and α = 0° are both 0. Meanwhile, the lateral deformation rate declines from 17.0% for α = 60° to 10.9% for α = 90°.
Funder
the National Natural Science Foundations of China
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献