Expression of Tenascin-C Is Upregulated in the Early Stages of Radiation Pneumonitis/Fibrosis in a Novel Mouse Model

Author:

Omori Kazuki1ORCID,Takada Akinori1,Toyomasu Yutaka1,Tawara Isao2,Shintoku Chihiro3,Imanaka-Yoshida Kyoko3ORCID,Sakuma Hajime1,Nomoto Yoshihito1

Affiliation:

1. Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan

2. Department of Hematology and Oncology, Mie University Hospital, Tsu 514-8507, Mie, Japan

3. Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan

Abstract

The lung is a major dose-limiting organ for radiation therapy (RT) for cancer in the thoracic region, and the clarification of radiation-induced lung damage (RILD) is important. However, there have been few reports containing a detailed comparison of radiographic images with the pathological findings of radiation pneumonitis (RP)/radiation fibrosis (RF). We recently reported the upregulated expression of tenascin-C (TNC), an inflammation-associated extracellular matrix molecule, in surgically resected lung tissue, and elevated serum levels were elevated in a RILD patient. Therefore, we have developed a novel mouse model of partial lung irradiation and studied it with special attention paid to the computed tomography (CT) images and immunohistological findings. The right lungs of mice (BALB/c) were irradiated locally at 30 Gy/1fr, and the following two groups were created. In Group 1, sequential CT was performed to confirm the time-dependent changes in RILD. In Group 2, the CT images and histopathological findings of the lung were compared. RP findings were detected histologically at 16 weeks after irradiation; they were also observed on the CT images from 20 weeks. The immunostaining of TNC was observed before the appearance of RP on the CT images. The findings suggest that TNC could be an inflammatory marker preceding lung fibrosis.

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3