Abstract
The design and development of cutting-edge light materials for extreme conditions including high-speed impact remains a continuing and significant challenge in spite of steady advances. Magnesium (Mg) and its alloys have gained much attention, due to their high strength-to-weight ratio and potential of further improvements in material properties such as strength and ductility. In this paper, a recently developed computational framework is adopted to quantify the effects of material uncertainties on the ballistic performance of Mg alloys. The framework is able to determine the largest deviation in the performance measure resulting from a finite variation in the corresponding material properties. It can also provide rigorous upper bounds on the probability of failure using known information about uncertainties and the system, and then conservative safety design and certification can be achieved. This work specifically focuses on AZ31B Mg alloys, and it is assumed that the material is well-characterized by the Johnson–Cook constitutive and failure models, but the model parameters are uncertain. The ordering of uncertainty contributions for model parameters and the corresponding behavior regimes where those parameters play a crucial role are determined. Finally, it is shown that how this ordering provides insight on the improvement of ballistic performance and the development of new material models for Mg alloys.
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献