Influence of Constant Magnetic Field upon Fatigue Life of Commercially Pure Titanium

Author:

Aksenova KrestinaORCID,Zaguliaev DmitriiORCID,Konovalov SergeyORCID,Shlyarov Vitalii,Ivanov YuriiORCID

Abstract

Cyclic tests of the multicycle fatigue of commercially pure titanium were performed under normal conditions (without a magnetic field) and after exposure to a constant magnetic field of varying density (B = 0.3, 0.4, 0.5 T). It was shown that the application of the constant magnetic field of varying density led to a fold increase in the average number of cycles to destruction of the VT1-0 titanium samples by 64, 123, and 163%, respectively. Scanning electron microscopy revealed that the magnetic field led to a 1.45-fold increase in the critical length of the fracture (the width of the fatigue crack growth zone) and a 1.6-fold decrease in the distance between the fatigue striations in the accelerated crack growth zone of the destroyed titanium samples. It was established that a subgrain (fragmented) structure formed in the area of the fatigue growth of the fracture of the titanium samples. The size of the subgrains corresponded to the spaces between the fatigue striations, which had an inhibitory influence on the microcrack propagation. Collectively, the revealed facts are indicative of a higher material resistance to fatigue fracture propagation and increased operation resources under the fatigue tests in the magnetic field, which correlates with the data on the growth of the average number of cycles to fracture of the VT1-0 titanium samples.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3