Abstract
Pyrite is an earth-abundant and low-cost material with a specific collection of properties including a low band gap and high absorption coefficient of solar light. These properties make pyrite a good choice in a wide variety of applications such as catalysts, batteries, and photovoltaic devices. A thin film composed of vertically aligned pyrite nano-rods was processed via a hydration-condensation method followed by subsequent aging and sulfurization. In this process, no ionic salt was used which resulted in a lower cost process with a lower level of impurities. Field emission scanning electron microscopy, X-ray diffraction, and Raman spectroscopy analyses were used to characterize the thin films in different steps of the process. The major impurity of the final thin films was the marcasite phase according to the Raman analysis which could be minimized by lowering sulfurizing time to about 60 min. In addition, after structural, electrical, and optical characterization of thin films, these layers’ performances in a photovoltaic device were also examined. After deposition of a thin aluminum layer, Schottky-type solar cells of pyrite formed which were then illuminated to measure their current-voltage characteristics. The results show that a combination of low-cost materials and a low-cost preparation method is applicable for building future solar cells.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献