New 5-Aminotetrazole-Based Energetic Polymers: Synthesis, Structure and Properties

Author:

Sukhanov Gennady T.,Bosov Konstantin K.,Filippova Yulia V.ORCID,Sukhanova Anna G.,Krupnova Irina A.,Pivovarova Ekaterina V.

Abstract

An N-glycidyl-5-aminotetrazole homopolymer was synthesized herein by nucleophilic substitution of 5-aminotetrazole heterocycles for chlorine atoms in poly-(epichlorohydrin)-butanediol. Copolymers of N-glycidyl-5-aminotetrazole and glycidyl azide with a varied ratio of energetic elements were synthesized by simultaneously reacting the 5-aminotetrazole sodium salt and the azide ion with the starting polymeric matrix. The 5-aminotetrazole-based homopolymer was nitrated to furnish a polymer whose macromolecule is enriched additionally with energy-rich terminal ONO2 groups and nitrate anions. The structures of the synthesized polymers were characterized by 1H and 13C NMR and IR spectroscopies, elemental analysis and gel-permeation chromatography. The densities were experimentally measured, and thermal stability data were acquired by differential scanning calorimetry. The insertion of aminotetrazole heterocycles into the polymeric chain and their modification via nitration provides an acceptable thermal stability and a considerable enhancement in density and nitrogen content compared to azide homopolymer GAP. By the 1.3-dipolar cycloaddition reaction, we demonstrated the conceptual possibility of preparing spatially branched, energy-rich polymeric binders bearing 5-aminotetrazole and 1,2,3-triazole heterocycles starting from the plasticized azide copolymers. The presence of the aforesaid advantages makes the reported polymers attractive candidates for use as a scaffold of energetic binders.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3